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What is the problem and why is it hard? 
Global behavior in complex information systems, such as the Internet, computing grids, and 
service-oriented architectures, is difficult to measure, understand and control. Subtle interactions 
and indirect couplings through shared resources lead to emergent behaviors, which are not 
predictable from analyzing the designs of individual components. Further, systems exhibit 
emergent phenomena over large scale, which presents significant challenges for current 
measurement, analysis and control regimes. As advances in information technology increasingly 
drive the nation’s economy and bolster national defense, ensuring sustained technical innovation 
will depend upon the availability of a consistent and reliable metrology. This required metrology 
must encompass a science of complex information systems, i.e., systems where interactions 
exhibit coherent properties that extend over large scale. NIST is uniquely poised to make seminal 
contributions to a measurement science for complex information systems. 
 
How is it solved today, and by whom? 
Emergent behavior1-2 in information systems is largely unaddressed today because industry lacks 
ability to measure at large scale with sufficient timeliness. Yet, as global information systems 
scale, emergent behavior poses serious threats to system stability, and consequently, to economic 
productivity. For example, coincident oscillation of network congestion – arising from Internet 
congestion-control algorithms3 – can lead to sluggish response times and wave-like traffic surges. 
More generally, the software industry is moving to a distributed, component-based paradigm for 
development and deployment; thus, software components can be tested in a laboratory and 
unleashed to thousands of users throughout a network – only then to discover unforeseen effects 
from emergent behaviors. For example, updating grid clients to combat denial-of-service attacks 
can cause a system-wide decay in job completion times due to an emergent property of 
distributed, resource-allocation algorithms4. One can extrapolate to future cases where updated 
components may be distributed widely only to stimulate unexpected emergent behaviors that did 
not appear during design, development, and testing. Such behaviors cannot be detected currently 
for two main reasons: (1) designers and developers have insufficient technical approaches and 
supporting tools to measure and analyze global system behavior and (2) testing laboratories 
possess insufficient techniques to exercise systems at scales required to reveal most emergent 
behaviors.  

The current state of the art can be discussed along two lines: industry and academe. Industry 
is investigating technology for autonomic computing5 that will allow system elements to measure 
the environment and adapt configuration and behavior dynamically. Autonomic computing 
research aims to reduce the costs of managing deployed systems. Technologies of this nature are 
likely to create a step increase in emergent behaviors because components must be tested for 
proper operation alone and in combination with other components as well as changing 
environmental conditions. Testing components in multiple combinations is currently a challenge6 
– adding consideration of the environment expands the potential state space further beyond 
industry’s ability to cope. 

Academe is investigating the use of large-scale, reconfigurable test and emulation systems 
(such as Emulab7 and DETER8). These facilities establish controlled environments of large scale 
to test performance, robustness, and security in system designs. These facilities could also be 
used as platforms for large simulations. Expected availability of multi-core, multi-chip 
microprocessors9 presage an order of magnitude increase in the scale of such test facilities, which 
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would permit designers to test systems of larger size. Yet, without significant advancement in 
techniques to measure and analyze behavior in distributed systems, larger test facilities will be 
insufficient. Some academic work is underway to develop techniques to visualize and 
characterize network traffic. Visualization techniques aim to reveal dynamic changes in network 
structure as well as network behavior10-11. Most attempts to characterize network traffic12 consider 
the application of power-spectral density, 1/f noise, and wavelets to reveal timescales of coherent 
traffic patterns. Much of this work aims to understand patterns of Internet traffic and to monitor 
changes over time. None of these approaches can directly identify causes associated with 
behavioral changes nor suggest how particular behaviors can be controlled. A few researchers13-15 
are investigating the application of utility functions as a means to assert decentralized control 
over network behavior. Overall, recent research on large, complex systems provides a critical 
mass of work on which to base a measurement science; however, establishing a coherent science 
will require additional effort. 
  
What is the new idea?  Why can we succeed now? 
To form the basis for a coherent science, we propose the application of modeling and analysis 
techniques from the physical sciences in order to define a systematic method to measure, 
understand and control emergent behaviors in complex information systems. To do this, we can 
draw on previous work. For example, using cellular automata16-19 (CA), a homogeneous modeling 
technique, physicists and chemists represent and analyze large collections of multi-dimensional 
elements, such as molecules. Others apply CA to understand the behavior of landslides20, 
earthquakes21, soil contamination22, and transportation systems23. The abstract nature of CA 
allows them to represent systems of much larger scale than possible using more detailed models. 
The basic idea underlying such approaches is to model interaction phenomena at large scale; 
measure and analyze data generated by the model; and gain insight into the dynamics underlying 
the phenomena. Increasing the scale and abstraction of a model permits global behaviors to be 
measured more clearly. For example, behavior of abstract models may be represented as a multi-
dimensional space that can be subjected to various spatial-temporal analyses24-25 to seek patterns, 
and to reveal causality. Capturing state spaces from more typical models of information systems 
proves intractable because the level of abstraction is quite low. Even if large state spaces could be 
captured, analyzing the information would prove quite challenging due to the volume of noise 
injected from myriad irrelevant details. 

Existing research on complex systems in the physical sciences provides a foundation on 
which we could build a coherent measurement science for complex information systems. Further, 
the expansion of cost-effective computation, expected over the next few years, provides new 
opportunity to create tractable models in the large. We should now be able to construct, exercise, 
and analyze abstract models (we plan to focus on agent automata26-28 – a recent evolution of CA) 
to measure, understand, and control global behaviors in large-scale systems, such as the Internet, 
computing grids, and service-oriented architectures. Such models should provide a foundation for 
systematic analysis, and, ultimately, a measurement science for complex information systems. 
 
Technical plan: 
Development of the necessary analysis method faces three main challenges: (1) construct agent 
automata (AA) models of large-scale systems that yield sufficiently accurate representations of 
the phenomena modeled, (2) identify tractable techniques to measure system evolution and reveal 
causality, and (3) characterize decentralized algorithms to elicit desired behaviors and thus verify 
the causal analysis. To address the model-construction challenge, we envision designing, 
implementing, and exercising AA models from which we collect measurements that may be 
compared against similar measurements from more detailed models of the same phenomena and, 
where appropriate, from measurements collected from comparable operational phenomena. In the 
Internet case, detailed simulators29-33 exist against which we can compare measurements obtained 
from an Internet AA model, which we will develop. Further, there exists a growing literature on 



 3 

Internet traffic measurements34-38 against which we can compare results from our Internet AA 
model. In the computing-grid case, there exists a growing population of detailed simulators39-41 
against which we can compare measurements from a Grid AA model, which we will develop. 
Presently, few measurements exist from operational grids; however, we plan to conduct 
comparisons between our Grid AA model and any accepted measurements that become available 
during the project. Validation of our AA models is a critical step because computer scientists do 
not currently accept that highly abstract models of large-scale systems capture behavior with 
sufficient fidelity to yield useful measurements. A major innovation from this project is 
production of validated AA models for selected large-scale (106 element) distributed systems.  

To address the tractable-analysis challenge, we envision a human-guided approach to 
exploratory data analysis42-43. We will record AA evolution as a multi-dimensional space against 
which projections, transformations, and visualizations may be applied. Some preliminary work4 
shows that searching for causality requires a human creative element that cannot be readily 
encoded in algorithms; thus, we will develop tools and techniques to support user-guided data 
analysis. We seek tools for comparative visualization of spatial-temporal data, as well as 
mathematical techniques to characterize and correlate behavioral data. As a means to measure 
emergent behaviors, we plan to investigate the comparative merits of known mathematical 
approaches to measure physical systems (e.g., self-similarity analyses44), economic systems (e.g., 
correlation analyses45), and information systems (e.g., Kolmogorov Complexity46). As we identify 
effective techniques to measure behavior and to detect causality, then we can encode them as 
algorithms. A main innovation of our approach is to support human-guided analysis first, while 
automating approaches only after establishing their effectiveness. Solving the challenges of 
model construction and tractable analysis will allow us to define an initial method for systematic 
analysis of complex information systems. 

To address the decentralized-control challenge, we envision investigating two main 
approaches: (1) market-based techniques and (2) biologically inspired mechanisms. Some 
academic researchers investigate the use of market-based techniques, such as auctions47, 
commodity markets48, and present-value analysis49, to influence behavior in distributed systems. 
While details differ, these approaches all exploit price feedback to influence resource allocation. 
Other researchers investigate biologically inspired mechanisms50-54, such as morphogen gradients, 
chemotaxis, quorum sensing, selective stabilization, and local and lateral inhibition, to self-
organize structure and behavior in distributed systems. Using our AA models and data-analysis 
tools, we will measure properties of various control regimes. Here, our research has two main 
innovations: control techniques will be (1) measured at large scale and (2) compared across 
disciplines (i.e., economics and biology). Solving the control challenge will verify our method 
and techniques for causal analysis.  

 
Below we list key milestones for the proposed research.  
 
• Year 1: Preliminary AA model of an Internet  
• Year 1: Initial implementation of a data repository and analysis framework 
• Year 2: AA model for Internet validated against detailed simulations 
• Year 2: Preliminary AA model of a computing grid 
• Year 2: Initial package of automated data analysis functions 
• Year 3: AA model for Internet validated against measurement data 
• Year 3: AA model of computing grid validated against detailed simulations 
• Year 3: Report outlining initial analytic method 
• Year 4: AA models augmented with economic control regimes  
• Year 4: Report characterizing properties of economic control regimes 
• Year 5: AA models augmented with biologically inspired control regimes 
• Year 5: Report characterizing properties of biologically inspired control regimes 
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• Year 5: Report describing analytic method, verified by control regimes 
 
What is the impact if successful, and who would care? 
Society is increasingly reliant on complex information systems. The Internet, a key factor in 
commerce, education, and government, can now be coupled with component-based software. The 
Defense Department recently announced55 a $13-billion plan to reengineer its information 
systems as a service-oriented architecture. Similar initiatives, underway throughout government56-

57 and industry58-60, will reshape the nation’s information infrastructure. Creating a measurement 
science, and supporting technologies, to understand and control behavior in complex information 
systems should provide designers with the metrology needed to deploy reliable and predictable 
systems that meet targets for performance, robustness, and reliability; thus, customers receive 
better service and the economy is spared potentially large costs associated with service 
disruptions that lead to subsequent, repeated redesign and redeployment. 
  
Why should NIST do this? 
No science exists to measure and control tomorrow’s complex information systems. The Federal 
government has an inherent responsibility to ensure the quality of the nation’s information 
infrastructure, a common resource crossing boundaries of individual organizations and 
constituencies. Charged with improving the nation’s measurement infrastructure, NIST can 
establish a measurement science that will enable designers to predict and control the behavior of 
large, complex information systems. 
 
List Key Selling Points. 
• OSTP-OMB Priority: High-End Computing and Networking R&D – “…research…for secure 

reliable, distributed computing environments….” 
• 2002 NIST report: Economic Impacts of Inadequate Infrastructure for Software Testing – 

“complexity of the…software needed to support the U.S.’s computerized economy is 
increasing at an alarming rate…. Estimates of the economic costs of faulty software in the 
U.S. range in the tens of billions of dollars per year.” 

• 2003 NSF report: Grand Challenges in Information Systems – “…complexity of large-scale 
information systems…approaches that of…the economy, where technicians may understand 
components, but can neither predict nor control the whole system.” (See also reference 53) 

• 2005 GCN article: Defense issues RFP for $13b Encore II contract – “The Net-Centric 
Enterprise Services program will use Web services….” Preliminary discussions with DISA 
and DARPA suggest potential support for NIST research to investigate unanticipated 
emergent behaviors in service-oriented architectures.  
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